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Abstract Three most simple Projection-Reconstruction

algorithms, namely, the Lowest-Value, Additive Back-

Projection and Hybrid Back-Projection/Lowest-Value

algorithms, are analyzed. A new, also simple, algorithm

that reconstructs the spectrum by utilizing the amplitude

histogram at each reconstruction point, is explored. The

algorithms are tested using simulated spectra. While all the

algorithms considered can potentially result in substantial

reduction of the amount of data needed for reconstruction,

they can suffer from a number of drawbacks. In particular,

they often fail when the spectra are noisy and/or contain

overlapping peaks. When compared to the existing algo-

rithms, the new, histogram-based algorithm has the

potential advantage of being able to deal with spectra

containing peaks of opposite phase.

Projection-reconstruction (PR) NMR has been proposed as

a way of reconstructing a multi-dimensional spectrum

using reduced-dimensional spectra, which are referred to as

projections. One reason which makes the PR methodology

very appealing to the NMR community is a potentially

enormous reduction of the amount of data needed to pro-

duce well-resolved spectra. Another reason is the

possibility to use very simple processing algorithms (e.g.,

compared to those required for processing of general non-

uniformly sampled data sets). Even though substantial data

size reductions using PR methodology applied to real NMR

data have been reported in a number of publications,

unfortunately, for truly realistic (i.e., noisy and/or crow-

ded) NMR spectra, this potential advantage of the PR

methodology often turns out to be illusory. However, due

to the advances in improving the experimental sensitivity,

there is always a hope, especially for certain specifically

designed NMR experiments, that these methods may still

be very useful.

The simplest PR case corresponds to reconstruction of a

3D spectrum from 2D plane projections. Because the

directly detected dimension is treated independently, this

case can be broken down into a series of 2D slices being

reconstructed from 1D projections. Detailed discussions of

the methodology of collecting the data are given in refs.

(Kupče and Freeman 2003, Kupče and Freeman 2004a,

2004b). Here we present an analysis of three existing

algorithms for the reconstruction of NMR spectra from

projections and propose a fourth. For simplicity the anal-

ysis focuses on the reconstruction of 2D planes from 1D

projections. All higher dimensional cases can be under-

stood as an extension of this case. The algorithms discussed

here are all simple and deterministic, and capable of

reconstructing any desired point that falls in the range of

the projections. The first algorithm discussed is the Lowest-

Value (LV) reconstruction, followed by the Additive Back-

Projection (BP) algorithm (Kupče and Freeman 2003,

2004a). A hybrid of the previous two algorithms called the

Hybrid Back-Projection/Lower-Value (HBLV) algorithm

(Venters et al. 2005) is then discussed. Finally, a new

algorithm is proposed and its characteristics compared with

the existing algorithms.

The projection–reconstruction problem

Given L-dimensional time-domain signal cðt~Þ �
cðt1; . . .; tLÞ available at some discrete subset of points t~�
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ðt1; . . .; tLÞ; in principle, one is interested in estimating the

full-dimensional spectrum Sðx~Þ (with x~ � ðx1; . . .;xLÞÞ
by solving the inverse problemZ

dLt~eit~x~Sðx~Þ ¼ cðt~Þ: ð1Þ

A number of approaches have been proposed in the past

to solve this problem. Mathematically rigorous spectral

inversion techniques are usually complicated with perhaps

one exception of the discrete Fourier transform (DFT) of

the truncated time-domain data.

In order to reconstruct the full spectrum, the simple PR

algorithms utilize the information contained in the radially-

sampled data. The latter consists of 1D spectral projections

corresponding to 1D DFT’s evaluated along certain direc-

tions defined by unit vectors s~i ¼ ðcos ai;1; . . .; cos ai;LÞ
ðks~ik ¼ 1Þ :

PiðxÞ ¼
Z

dte�itxcðts~iÞ: ð2Þ

We note here that for a sufficiently dense set of data

points, any non-uniformly sampled time-domain signal

cðt~Þ; as well as a radially-sampled one (as in Eq. 2), can be

inverted by directly evaluating the inverse Fourier

transform using the quadrature resulting from the non-

uniform grid provided. However, for a sparsely sampled

data such a direct inversion is very inaccurate, while an

accurate inversion (if possible at all) should at least be very

non-trivial. The simple PR algorithms are intended to

invert sparse radially-sampled data. None of such

algorithms are rigorous: they are rather intuitive, and are

not designed to solve Eq. 1 correctly. Moreover, they may

easily fail for crowded and/or noisy spectra. However, for

spectra with relatively high SNR and sharp well separated

peaks, where the lineshapes and amplitudes are not very

important, they may be useful and efficient in terms of the

total amount of data needed to obtain high spectral

resolution.

Considering a 2D reconstruction problem, effectively

corresponding to a 3D NMR experiment, a single line (in

the x1-x2 plane) is characterized by two pairs of fre-

quencies and widths, (m1,m2) and (c1,c2). The position of the

line in an a-projection, defined by angles ai,1 = a and

ai,2 = p/2-a will then be given by

ma ¼ m1 cos aþ m2 sin a; ð3Þ

and the linewidth will satisfy a similar formula,

ca ¼ c1j cos aj þ c2j sin aj; ð4Þ

(i.e., the width is always positive and varies within some

finite interval). The latter expression implies that the width

of the projected line is a-dependent. Since the integral

weight of the line,

Z
dxPiðxÞ; ð5Þ

is preserved (i.e., does not depend on a), the height of the

line in the projection will be inversely proportional to its

width. This inconsistency in the line heights for projections

at different angles makes it difficult to treat them on equal

footing. However, by convoluting the spectra in all the

projections with sufficiently broad Gaussians of the same

width, one can make the projections of the same line at

different angles more uniform (albeit for the price of

reducing the resolution). In our further analysis we assume

that such a broadening is always implemented. Yet, one

still has to keep in mind that none of the algorithms dis-

cussed below are able to faithfully reproduce the shape of a

line, as these algorithms all take a similar approach to the

problem; namely, they all try to reconstruct the spectrum at

each point independently of the neighboring points.

The Lowest-Value algorithm

The LV algorithm is the most aggressive in terms of the

artifact suppression, yet the simplest approach to recon-

struction, in which at each point x~ the spectral amplitude is

estimated by selecting the lowest-value out of the set of the

n available projections:

SLVðx~Þ ¼ sgn PiðxÞ½ �min
n

i¼1
PiðxÞj j; x ¼ x~ � s~i; ð6Þ

where sgnðxÞ ¼ x=jxj:

The additive back-projection algorithm

The second algorithm is similar to the first in simplicity,

but in an effort to gain in signal to noise ratio (SNR), all the

values at each point are summed:

SBPðx~Þ ¼ 1

n

Xn

i¼1

PiðxÞ; x ¼ x~ � s~i: ð7Þ

The drawbacks of both reconstruction formulas, 6 and 7,

are well documented (Kupče and Freeman 2004a, 2004b,

Venters et al. 2005, Yoon et al. 2006) While Eq. 6

discriminates well against false-positive peaks, it

generally results in a poor SNR, as picking the smallest

value (out of n available values) cannot take advantage of

signal accumulation by combining the information from all

the n available data sets. Moreover, due to the finite SNR,

the spectrum gets worse as more projections are used.

For demonstration purposes, we made a model spectrum

of four peaks, well separated in two dimensions and

arranged around the center (see Fig. 1). The parameters of
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the peaks are given in Table 1. For simplicity, the widths of

all the peaks are the same. They are also the same in both

dimensions.

In this and all other numerical experiments the projec-

tion angles were always evenly dispersed in the interval [-

p/2;p/2], with angles a = 0 and a = p/2 included.

The projections all contained 1,000 points so that simple

interpolation could be used in the reconstruction process.

Gaussian noise was added so that twice the standard

deviation of the noise was 10% of the largest non-over-

lapping peak height in the a = 0 and a = p/2 projections.

All four signals had greater than 1 signal to noise ratios, the

smallest one being SNR ¼ 2: Gaussian noise was always

included into the simulated projections unless noted

otherwise.

Reconstructed spectra are usually not smooth, which

makes them hard to contour. Therefore, before making

contourplots the spectra were convoluted with Gaussians.

All the spectra were reconstructed to a grid with 300 points

in each dimension. Contours in all of the spectra started at a

level above significant noise, but low enough to see the

peaks of interest where possible.

Figure 2 shows spectra reconstructed by the LV algo-

rithm using different number, n, of projections. The LV-

reconstructed spectra are well-resolved for small number

(n = 4) of projections. That is, for sparse spectra consisting

of narrow and well separated peaks and relatively high

SNR this reconstruction technique is very efficient. How-

ever, when n is increased the smallest peak breaks into

pieces, and the overall spectral resolution worsens. On

average, the spectral magnitude reconstructed by Eq. 6 is

reduced with increasing n. At the same time, the noise level

is also reduced. Depending on the noise statistics and the

actual peak height, the apparent SNR for each peak may or

may not improve with increasing n; at the same time, due

to the noise fluctuations the peak lineshapes become rough.

Even though this roughness can partially be removed by

convoluting the reconstructed spectrum with a Gaussian,

sufficiently small peaks would still break into pieces even

after smoothing.

Unlike the LV reconstruction, Eq. 7 does accumulate

the signals from all the n available projections, albeit for

the price of producing false cross-peaks formed by the BP

ridges. This can be seen in the lower right panel of Fig. 3.

The Hybrid Back-Projection/Lowest-Value algorithm

In the HBLV algorithm as presented in refs. (Venters et al.

2005, Coggins and Zhou 2006) rather than taking the low-

est-value or summing the values, a number k \ n is

selected. Every combination of k projections is summed. Of

all these combinations, the lowest at each point is selected:

SHBLVðx~Þ ¼ 1

k
sgn

Xn

Pi2Aj

PiðxÞ

2
4

3
5� nCk

min

j ¼ 1

Xn

Pi2Aj

PiðxÞ

������

������;
x ¼ x~ � s~i;

ð8Þ

where Aj (j = 1, …, nCk) define all the possible choices of

k projections Pi(x) out of n available ones. As argued in

refs. (Venters et al. 2005, Coggins and Zhou 2006), due to

the sum over k projections, expression (8) does take some

advantage of signal accumulation and thus has better SNR

properties than that of the LV reconstruction, while the

ridge and cross-peak artifacts are still removed by the

minimization step. Figure 4 demonstrates the differences

between the above three algorithms in how the recon-

struction at some particular point is made by selecting a

value out of the n available values.

The striking drawback of Eq. 8 is that numerically it is

by about a factor of nCk = n!/(n-k)!k! more expensive

than the other two expressions, (6) and (7). For example,

one possibility suggested by Coggins and Zhou (2006)

corresponds to n = 30 and k = 8, in which case recon-

struction by Eq. 8 at each spectral point requires to sample

as many as 30C8 � 6� 106 terms. In the case of 4D

spectral reconstruction, this can make a computer cluster

busy for several days. Although the authors of PR-CALC

Fig. 1 The model spectrum constructed using the peak parameters

from Table 1

Table 1 The parameters for the peak positions (m1, m2), widths (c1, c2)

and amplitudes (d) in the model 2D spectrum shown in Fig. 1

peak m1 m2 c1 c2 d

1 10.0 7.0 0.2 0.2 0.2

2 7.5 5.0 0.2 0.2 1

3 11.5 5.2 0.2 0.2 0.5

4 9.7 3.2 0.2 0.2 1
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(Coggins and Zhou 2006) did everything to carefully

optimize their code for best performance, they find that

because of the nCk factor the use of more than about 30

projections may become prohibitive.

At this point, we distinguish the following two cases. In

the first case, for which the PR-NMR techniques are per-

haps most suitable, the spectrum Sðx~Þ is assumed to be

positive, except for negative but small noise spikes. In such

a case the negative spikes in the projections Pi(x) can be

removed before further processing.

Without loss of generality we assume that the absolute

values of the amplitudes Pi(x) have been sorted in the

ascending order.

jP1ðxÞj � jP2ðxÞj � . . .� jPnðxÞj: ð9Þ

Clearly, for all positive projections, the minimum arising in

Eq. 8 is given by the sum of the k lowest Pi(x) values:

min
nCk

j¼1

Xn

Pi2Aj

PiðxÞ ¼
Xk

i¼1

PiðxÞ: ð10Þ

So, for spectra with no negative peaks the HBLV algorithm

boils down to a trivial calculation, which can be accom-

plished by many orders of magnitude faster than that

suggested by Eq. 8. In words, for each frequency grid point

of interest the value of the reconstructed spectrum is set to

be equal to the arithmetic mean of the k smallest (out of n

available) projection values. The modified (i.e., using

Eq. 10) HBLV spectral reconstruction algorithm is dem-

onstrated in Fig. 3 for k = 8, 16, 24, 30 and n = 30, with

the k = 30 case formally corresponding to the BP algo-

rithm. The best spectra are obtained using k = 8 and

k = 16, while at k = 24 the ridge artifacts start to show

above the level of the lowest peak.

The second case corresponds to spectra that may have

genuine negative peaks. In this case, the minimum in Eq. 8

is not necessarily given by the k projections with smallest

magnitudes |Pi(x)|, because of possible cancellations of

negative and positive contributions. However, these can-

cellations are also the reason for Eq. 8 being not a

meaningful reconstruction formula, when negative peaks

are encountered. Let us demonstrate this statement using a

simple example shown in Fig. 5. In this demonstration the

true spectrum consists of only four peaks: a negative peak

at point ðx~1Þ with amplitude S1 = -1 units, and three

positive peaks with amplitudes S2 = 7, S3 = 8, S4 = 9

units, located at three other positions. We are interested in

Fig. 2 Spectra reconstructed by the LV algorithm from radially-

sampled data with SNR = 10 using 4, 8, 16 and 30 projections. The

exact noiseless spectrum is shown in Fig. 1. All the spectra are

smoothed as described in the text and the contour-levels are adjusted

to adequately represent all the peaks. An enlarged view (300%) of the

area enclosed in the dashed line is shown inset. As more projections

are used, both the amplitudes of the reconstructed peaks and the noise

level decrease with the same rate. However, as the number of

projections grows the smaller peaks break into pieces due to the noise

fluctuations
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recovering the spectrum at ðx~1Þ assuming infinite SNR in

all the projections. There are three projection angles at

which the negative peak overlaps with one of the positive

peaks. This may result in the following set of projection

amplitudes:

PiðxÞ 2 f6; 7; 8;�1;�1;�1; . . .g; x ¼ x~1 � s~i;

where we assumed that all projections, except the first

three, are due to the single negative peak. Following the

suggestion by Coggins and Zhou (2006) we set k = 8 and

apply Eq. 8 to reconstruct the spectrum at point ðx~1Þ,
where the negative peak is situated:

SHBLVðx~1Þ ¼ P2ðxÞ þ
X10

j¼4

PiðxÞ ¼ 7þ 7 � ð�1Þ ¼ 0:

It is not hard to see that the HBLV reconstruction using

k = 7 or k = 9 will also result in SHBLVðx~1Þ ¼ 0:

At first glance our example may seem dishonest as it

was carefully designed (or ‘‘cooked-up’’) to make the

method fail. However, we argue that in practice the situa-

tion is even worse due to the presence of a large number of

positive peaks with different amplitudes overlapping with

small negative peaks and thus resulting in many possibil-

ities for similar-type cancellations. Moreover, increasing

the number of projections n will only increase the chances

that there will be a combination of k negative and positive

terms summing to some small value below the noise level.

Fig. 3 The modified HBLV algorithm (cf. Eq. 10) is used here to

reconstruct the model spectrum with k = 8, 16, 24, 30 out of n = 30

projections. For the (k = 24, n = 30) case the artificial ridges start to

show above the level of the lowest peak. The (k = 30, n = 30) case

(the lower right spectrum) is formally equivalent to using the BP

algorithm

Fig. 4 For the LV algorithm the lowest-value at each point is

selected; in BP the average of the values is selected; and in HBLV the

lowest partial average of the projections is selected as indicated by the

arrows
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Once we are convinced that Eq. 8 does not present

advantages for mixed spectra, i.e., having amplitudes of

opposite sign, it becomes apparent that the problem of

combinatorial search for the smallest sum is superficial. For

a mixed case, the modified procedure (Eqs. 9 and 10)

results in the spectrum, which is an upper-bound of that

given by Eq. 8. The modified HBLV is still a valid PR

algorithm, but its status is somewhat similar to that of

Eq. 6: in the n? ? limit with fixed value of k the HBLV

spectrum will still suffer from the loss of sensitivity.

However, depending on the k/n ratio, the SNR of the

HBLV spectrum will be better than that of a single LV

spectrum.

We also note ref. (Yoon et al. 2006) discussing a variety

of PR methods. For example, one of the proposed exten-

sions of the LV algorithm (similar to that using Eqs. 9 and

10 is to divide the set of n projections into k groups and

apply Eq. 6 to each group independently. The resulting k

LV estimates are then averaged to obtain an estimate that

has better SNR properties than a single LV spectrum.

The histogram method

Inspired by the previous example, here we propose yet

another deterministic PR algorithm that is simple, numer-

ically inexpensive, but applicable to the case of negative

amplitudes. Namely, for a given reconstruction point ðx~; Þ
consider the set of the corresponding projection values

Piðx~ � s~iÞ ði ¼ 1; ; nÞ and the distribution function g(P)

estimated from their histogram. Assuming that g(P) has a

maximum at P ¼ P̂; the reconstructed spectrum can be

estimated by setting Sðx~Þ ¼ P̂: One way to accomplish this

idea is to use the expression:

gðPÞ ¼
X

i

exp �ðP� Piðx~ � s~iÞÞ2

2r2

" #
; ð11Þ

where the Gaussian width r is an adjustable parameter.

Clearly, its choice depends on the number of projections

and the dynamic range of the amplitudes. r must be large

enough to make the resulting distribution g(P) at each point

ðx~Þ sufficiently smooth in order to remove the ambiguities

associated with the selection of its maximum P̂ (see

Fig. 6). The existence of an adjusting parameter makes the

Histogram Method less deterministic and may be regarded

as a disadvantage, e.g., when compared to the LV and BP

algorithms. (Note that HBLV also has an additional

adjusting parameter, k, whose choice is not obvious.)

Although other recipes may be used, in the present work

parameter r was chosen according to

r ¼ 2

n
ðPmax � PminÞ; ð12Þ

where Pmax and Pmin are, respectively, the maximum and

minimum values of the projection amplitudes at a given

reconstruction point. This choice worked well for the

examples considered.

The value from the sum of the amplitude distributions

does not depend on adding the amplitudes themselves, and

therefore, there is no way for the amplitude values to

cancel and cause severely attenuated or missing peaks. The

sensitivity of the Histogram Method improves when more

projections are used, because in this case one has better

amplitude statistics at each reconstruction point and is able

to produce a more accurate distribution function from the

amplitude histogram. The method should generally not

1

4

3

2

P
1(r)

P
2 (r)

P3(r)

P
i
(r)

Fig. 5 Demonstration of a failure of the HBLV algorithm to

reconstruct peaks with negative amplitudes (see text). The spectrum

consists of one negative peak with amplitude S1 = -1 and three

positive peaks with amplitudes S2 = 7, S3 = 8 and S4 = 9. The

negative peak overlaps with one of the positive peaks in projections

Pi(x) (i = 1,2,3)

Fig. 6 Demonstration of the new histogram-based PR algorithm:

instead of taking the lowest amplitude out of a set of amplitudes or

averaging their values, the most likely amplitude is determined by

finding the maximum of the amplitude distribution
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produce artificial ridges that usually accompany the BP

algorithm. However, as is the case with the other three

simple PR algorithms, the Histogram Method does not

preserve the lineshapes and it does not address some of the

other issues with PR such as dealing with crowded spectra

or assessing the quality of the reconstruction.

The Histogram Method is first demonstrated and com-

pared to the other methods using the model spectrum

described in Table 1, except that the bottom and right

peaks (numbered 3 and 4) are now negative. The results of

the reconstruction using n = 30 simulated projections are

shown in Fig. 7. The appearance of the spectra depends on

the choice of the contour-levels: the presence of low-level

contours would show artifacts (false-positive peaks), while

the desire to hide the artifacts below the lowest contour-

level results in the false-negative peaks. In Fig. 7 we have

chosen the latter option. While the new approach can

easily resolve both negative and positive peaks, the other

three methods (LV, BP, and HBLV) have difficulties,

particularly in resolving the smallest peak (1), so it would

stand above the artifact/noise level. The BP method is

barely able to reproduce peak 1, but the ridge artifacts

make the overall BP spectrum inferior to that of the

Histogram Method.

Fig. 7 Here the LV, modified HBLV, BP and the Histogram

algorithms are used to reconstruct a model spectrum that is identical

to that in Table 1 and Fig. 1 except that the bottom and right peaks

(numbered 3 and 4) are now negative. The LV spectrum cannot

repoduce the smallest of the peaks and requires double the gaussian

smoothing to make the peaks contour. The modified HBLV algorithm,

(cf. Eq. 10) has better results with larger k. The BP suffers from the

same ridges as before and the peak intensities are attenuated down to

the level of the artificial ridges
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As another demonstration of the Histogram Method, in

Fig. 8 we consider a slice of simulated HNCACB spectrum of

ubiquitin taken at 8.71 ppm in the proton dimension. The

HNCACB experiment is one in which there are peaks of

opposite phase (Wittekind et al. 1993, Sattler et al. 1998). The

peak parameters used to simulate 30 projections are given in

Table 2. As before, the projections were generated by adding

10% Gaussian noise. As the figure shows, the Histogram

Method using 30 projections produces a reconstruction of

high quality, even when the peaks are of opposite phase.

Conclusions

The algorithms tested here are all able to reconstruct model

signals, but with varying degrees of success. The result can

Fig. 8 Reconstruction of a simulated slice of an HNCACB spectrum of ubiquitin at 8.71 ppm in the proton dimension using the same algorithms

and number of projections as in Fig. 7. The peak parameters are given in Table 2

Table 2 The peak parameters used in the simulated slice of the

HNCACB spectrum of ubiquitin (Fig. 8)

peak mC mN cC cN d

1 59.89 121.52 0.15 0.15 1.3

2 40.95 121.52 0.15 0.15 -0.5

3 61.94 121.52 0.15 0.15 4

4 69.65 121.52 0.15 0.15 -1.7

5 61.94 124.80 0.15 0.15 1.3

6 69.94 124.80 0.15 0.15 -0.5

7 52.83 124.80 0.15 0.15 4

8 47.07 124.80 0.15 0.15 -1.7

The chemical shifts were obtained from ref. (Ulrich et al. 2007) and

other parameters were chosen using ref. (Sattler et al. 1998)
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depend heavily on the noise level, number of peaks,

number of projections, and other factors. The appearance

of the reconstructed spectra can be much improved by the

use of a Gaussian smoothing. This improvement comes

with a small loss in resolution and a small attenuation in

peak height. The HBLV algorithm can be processed in

about the same time as all the LV or BP algorithms, when

formulated correctly (i.e., using Eq. 10 rather than Eq. 8).

A new histogram-based algorithm is shown to be capable

of reconstructing spectra with improved or similar quality

when compared to the existing algorithms, especially in the

case of spectra with peaks of opposite phase.

Implementation of Eq. 11 followed by a maximization

procedure within an existing PR software is straight-for-

ward and requires only a few lines of a code that could

replace a few lines of the code corresponding to, e.g., the

LV algorithm. Reconstruction by the Histogram Method

will become available through the Varian software in the

near future.

The model examples used in this article are not suffi-

cient to fully assess the advantages and disadvantages of

the Histogram Method. Once the algorithm is implemented

within the NMR software, it will be tested on real NMR

data. Furthermore, the Histogram Method as presented here

is simple, but perhaps not the most efficient spectral

reconstruction algorithm based on the statistical analysis of

the projected amplitudes. We anticipate that more sophis-

ticated methods, which, in particular, are not restricted to

the local statistical analysis, may be more efficient.
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